

Rodete turbina de vapor

Rodete turbocompresor

José Agüera Soriano 2012

TURBOMÁQUINAS

- Fundamento y definición
- Clasificación fundamental de las turbinas
- Clasificación según circulación en el rodete
- Pérdidas, potencias y rendimientos
- Teoría elemental de las turbomáquinas
- Semejanza en turbomáquinas

FUNDAMENTO Y DEFINICIÓN

El fluido, al circular entre los álabes del *rodete* varía su cantidad de movimiento provocando sobre los mismos la *fuerza* correspondiente.

Esta *fuerza* al desplazarse con el álabe realiza un trabajo, llamado como sabemos *trabajo técnico* W_t o, más específicamente, *trabajo interior en el eje* cuando de turbomáquinas se trata.

En el *rodete* tiene pues lugar una transformación de *energía del flujo* en *energía mecánica* en el eje de la máquina, o viceversa.

Productoras de energía mecánica

- turbinas hidráulicas
- turbinas de vapor
- turbinas de gas

Consumidoras de energía mecánica

- bombas hidráulicas
- ventiladores
- turbocompresores

Además del *rodete* existen *órganos fijos* cuya solución va a variar según qué máquina.

Clasificación fundamental de las turbinas

Para que el agua llegue a la turbina con una cierta energía hay que reducir el caudal en la conducción de acceso, y esto se consigue, como sabemos, con una tobera, donde se transformará la energía potencial de llegada en energía cinética.

Según donde tenga lugar esta transformación, las turbinas se clasifican en,

- turbinas de acción
- turbinas de reacción

Unas y otras tienen desde luego el mismo principio físico de funcionamiento: *variación de cantidad de movimiento* del flujo a su paso por el rodete.

Los canales entre álabes en turbinas son convergentes, y en bombas divergentes.

Turbina de acción

La transformación de la energía potencial del flujo en energía cinética tiene lugar integramente en órganos fijos *(tobera)*.

Turbina de reacción (pura)

La transformación de la energía potencial del flujo en energía cinética tiene lugar integramente en las *toberas* incorporadas al *rodete* (no existe en la industria).

Turbina de reacción de vapor (pura)

Esfera giratoria de Herón (120 a.C.)

Turbina de reacción (es mixta de acción y reacción)

La transformación de la energía potencial del flujo en energía cinética se realiza una parte en una *corona fija* y el resto en el *rodete* (es como una tobera partida).

$$\varepsilon = \frac{(p_1 - p_2)/\gamma}{H}$$

acción: $\varepsilon = 0(p_1 = p_2)$ reacción: $\varepsilon = 0 \div 1$ reacción pura: $\varepsilon = 1$

Grado de reacción real

$$\varepsilon = \frac{(p_1 - p_2)/\gamma}{H_t}$$

2 RODETE

CORONA

Clasificación según la dirección del flujo en el rodete

- *turbinas de vapor*: axiales
- turbinas de gas: ax
- axiales
- turbinas hidráulicas: axiales y mixtas
- bombas:

- axiales, radiales y mixtas
- *turbocompresores*: axiales y radiales.

PÉRDIDAS EN TURBOMÁQUINAS

- hidráulicas
- volumétricas
- mecánicas

Son las pérdidas de energía que tienen lugar en el flujo, entre la entrada \mathbf{E} y la salida \mathbf{S} de la turbomáquina.

En turbomáquinas térmicas:

hidráulicas + volumétricas = internas

Pérdidas hidráulicas

1. Pérdidas H_r por rozamiento:

$$H_r = K_r \cdot Q^2$$

2. Pérdidas H_c por choques:

 $H_c = K_c \cdot (Q - Q^*)^2$ (* condiciones de diseño)

3. En algunas turbomáquinas, la velocidad de salida $V_{\rm S}$ tiene cierta entidad y se pierde:

$$H_{VS} = \frac{V_S^2}{2g}$$

En otras (turbinas Francis, por ejemplo), esta energía cinética de salida es despreciable.

Pérdidas volumétricas, o intersticiales

Entre el rodete y la carcasa pasa un caudal q cuya energía se desperdicia. El caudal Q_r que circula por el interior del rodete sería,

Pérdidas mecánicas, o exteriores

1. Se deben a los rozamientos del prensaestopas y de los cojinetes con el eje de la máquina.

2. El fluido que llena el espacio entre la carcasa y el rodete origina el llamado *rozamiento de disco*. Como es exterior al rodete, han de incluirse en las *pérdidas exteriores.*

Potencias

Potencia P del flujo

Es la que corresponde al *salto de energía H* que sufre en la máquina el caudal *Q*:

$$P = \gamma \cdot Q \cdot H$$

Potencia interior en el eje, P_i

Es la suministrada al (o por el) eje por el (o al) caudal Q_r que pasa por el interior del rodete:

$$P_i = \gamma \cdot Q_r \cdot H_t$$

Potencia interior teórica en el eje, P_{it} Si q = 0:

$$P_{it} = \gamma \cdot Q \cdot H_t$$

La potencia P_{ν} perdida a causa de las pérdidas volumétricas sería,

$$P_{\nu} = \gamma \cdot q \cdot \left| H_t \right|$$

Potencia exterior en el eje, P_e

Es la potencia medida exteriormente en el eje, y recibe otros nombres como *potencia efectiva* y *potencia al freno*:

$$P_e = |P_i - P_m|$$
$$P_e = M \cdot \omega$$

Se obtiene midiendo en un banco de pruebas el *par motor M* y la *velocidad angular o*.

Rendimientos *Rendimiento hidráulico* η_h

Rendimiento volumétrico, η_v

Rendimiento global, η (turbina)

 P_{e}

$$\eta = \frac{P_e}{P} = \frac{M \cdot \omega}{\gamma \cdot Q \cdot H}$$

$$\eta = \frac{P_e}{P} = \frac{P_e}{P_i} \cdot \frac{P_i}{P_{it}} \cdot \frac{P_{it}}{P}$$

 $\eta = \eta_m \cdot \eta_v \cdot \eta_h$

Rendimiento global, η (bomba)

$$\eta = \frac{P}{P_e} = \frac{\gamma \cdot Q \cdot H}{M \cdot \omega}$$

 $\eta = \eta_m \cdot \eta_v \cdot \eta_h$

Hay que trabajar sobre los tres rendimientos para aumentarlos en lo posible.

TEORÍA ELEMENTAL DE LAS TURBOMÁQUINAS

Las ecuaciones anteriores son más bien definiciones y fórmulas de comprobación. Ninguna de ellas relaciona la geometría de la máquina con las prestaciones.

La *ecuación de Euler* que vamos a desarrollar, a pesar de sus hipótesis simplificativas, sigue siendo una buena herramienta para estimar el diseño de una turbomáquina y/o para predecir comportamientos de la misma.

Introducción

Antes de demostrar la *ecuación de Euler*, analicemos algunas cuestiones preliminares que nos ayudarán a comprender mejor el sentido físico de la misma.

Álabe móvil

 $c = velocidad \ absoluta \qquad \vec{c_1} = \vec{w_1} + \vec{u}$ $u = velocidad \ del \ álabe w = velocidad \ relativa$

caudal que sale de la *tobera* = $\rho \cdot S \cdot c_1$ caudal en *volumen de control* = $\rho \cdot S \cdot w_1$

Álabe móvil

La diferencia de caudal, entre lo que sale de la *tobera fija* y lo que entra en el *volumen de control*, se utilizaría en alargar el chorro.

Triángulo de velocidades a la salida $(w_1 \approx w_2)$

Fuerza sobre el álabe

Es la fuerza provocada por el caudal $\rho \cdot S \cdot w_1$ al cambiar su dirección de \vec{w}_1 a \vec{w}_2

 $\vec{F} = \rho \cdot S \cdot w_1 \cdot (\vec{w_1} - \vec{w_2})$

En el álabe fijo intervienen las \vec{c} y en el álabe móvil las \vec{w} .

Potencia desarrollada

$$P = F_u \cdot u$$

a costa lógicamente de la cedida por el flujo.

Rodete

Si alrededor de una rueda *libre* colocamos álabes, siempre habrá uno que sustituya al que se aleja. El conjunto formarán *un todo (rodete)* que es el *volumen de control* a considerar.

El caudal másico de entrada en dicho *volumen de control* no es ahora $\rho \cdot S \cdot w_1$, si no $\rho \cdot S \cdot c_1$, pues no hay alargamiento del chorro: las velocidades a considerar son las *absolutas*:

$$\vec{F} = \overrightarrow{p_1 \cdot S_1} + \overrightarrow{p_2 \cdot S_2} + \rho \cdot S \cdot c_1 \cdot (\vec{c_1} - \vec{c_2})$$

Caso general y más frecuente

Las toberas son sustituidas por una *corona fija* de álabes, que es alimentada a través de una cámara en espiral. Es de *admisión total*: el flujo entra en *rodete* por toda su periferia.

Triángulos de velocidades

- *c* velocidad absoluta (del flujo)
- *u* velocidad tangencial (del rodete)
- *w* velocidad relativa (del flujo)
- α ángulo velocidad absoluta con tangencial
- β ángulo velocidad relativa con tangencial

Con subíndice (1) para el triángulo de entrada y con subíndice (2) para el de salida.

Triángulos de velocidades

Para evitar choques a la entrada del rodete, w_1 ha de ser tangente al álabe.

Velocidades tangenciales

 $u_1 = \omega \cdot r_1$ $u_2 = \omega \cdot r_2$

Triángulo de entrada

$$\vec{c_1} = \vec{u_1} = \vec{w_1}$$

Triángulo de salida

$$\vec{c_2} = \vec{u}_2 = \vec{w}_2$$

El triángulo de velocidades de entrada, $c_1 u_1 w_1$, va variando en el recorrido del flujo por el rodete, resultando al final el de salida,

 $c_2 u_2 w_2$.

Ecuación de Euler

En el caso más general de turbomáquinas de reacción $(p_1 \neq p_2)$, la fuerza sobre los álabes del rodete sería,

$$\vec{F} = \overrightarrow{p_1 \cdot S_1} + \overrightarrow{p_2 \cdot S_2} + \vec{m} \cdot (\vec{c_1} - \vec{c_2})$$

Las fuerzas $p_1 \cdot S_1$ y $p_2 \cdot S_2$ que actúan sobre las secciones de entrada y de salida del *rodete*, o son paralelas al eje (axiales) o cortan al eje: *no contribuyen al giro del motor*.

El par motor es pues provocado, en cualquier caso, sólo por las fuerzas, $\dot{m} \cdot \vec{c_1}$ y $\dot{m} \cdot \vec{c_2}$: $M = M_1 - M_2 = \dot{m} \cdot c_{\mu 1} \cdot r_1 - \dot{m} \cdot c_{\mu 2} \cdot r_2$ $P_{i} = M \cdot \omega = \dot{m} \cdot c_{\mu 1} \cdot r_{1} \cdot \omega - \dot{m} \cdot c_{\mu 2} \cdot r_{2} \cdot \omega$ perfil álabe perfil álabe $P_i = \dot{m} \cdot (c_{u1} \cdot u_1 - c_{u2} \cdot u_2)$ rodete corona fija Dividiendo por \dot{m} obtenemos la energía que se consigue de α_1 cada kg de fluido que pasa por el interior del *rodete*: \mathcal{U}_1 $W_t = c_{u1} \cdot u_1 - c_{u2} \cdot u_2$ $w_2 \beta_2$ $W_t = u_1 \cdot c_1 \cdot \cos \alpha_1 - u_2 \cdot c_2 \cdot \cos \alpha_2$ $u_1 \equiv \omega \cdot r_1$ ω $u_1 \neq u_2$ $u_2 \equiv \omega \cdot r_2$

José Agüera Soriano 2012

$$W_t = u_1 \cdot c_1 \cdot \cos \alpha_1 - u_2 \cdot c_2 \cdot \cos \alpha_2$$

ecuación fundamental de las turbomáquinas, o ecuación de Euler.

- a) es aplicable a líquidos y a gases;
- b) no depende de la trayectoria del fluido en del *rodete*; sólo de los triángulos de entrada (1) y de salida (2) del mismo;
- c) es aplicable con independencia de las condiciones de funcionamiento.
- El estudio es muy elemental:
 - no incluye el análisis de pérdidas
 - supone que los álabes guían perfectamente al flujo, lo que sería cierto si imaginamos infinitos álabes sin espesor material; lo que se conoce como *teoría unidimensional* y/o *teoría del número infinito de álabes*.

Segunda forma de la ecuación de Euler

Diferentes condiciones de trabajo originan diferentes triángulos de velocidades. Sea cual fuere su forma:

$$w_1^2 = c_1^2 + u_1^2 - 2 \cdot u_1 \cdot c_1 \cdot \cos \alpha_1$$

$$w_2^2 = c_2^2 + u_2^2 - 2 \cdot u_2 \cdot c_2 \cdot \cos \alpha_2$$

$$W_t = \frac{c_1^2 - c_2^2}{2} + \frac{u_1^2 - u_2^2}{2} + \frac{w_2^2 - w_1^2}{2}$$

Turbinas: W_t es positivo: centrípetas $(u_1 > u_2)$ Bombas: W_t es negativo: centrífugas $(u_1 < u_2)$

Para *H* pequeñas, tanto en turbinas como en bombas, convendrá el flujo axial $(u_1 = u_2)$:

$$W_t = \frac{c_1^2 - c_2^2}{2} + \frac{w_2^2 - w_1^2}{2}$$

En general, si W_{r12} fuese despreciable,

$$W_t = \frac{c_1^2 - c_2^2}{2} + \frac{p_1 - p_2}{\rho} \qquad \frac{p_1 - p_2}{\rho} = \frac{u_1^2 - u_2^2}{2} + \frac{w_2^2 - w_1^2}{2}$$

En las turbomáquinas axiales $(u_1 = u_2)$, la variación *energía de presión* en el rodete se traduce en una variación en sentido contrario de la *energía cinética relativa* del flujo.

SEMEJANZA EN TURBOMÁQUINAS

A menos que se trate de fluidos muy viscosos, la situación del flujo en turbomáquinas es independiente del número de *Reynolds*.

En tal caso, para la semejanza *cinemática*, sólo vamos a exigir,
a) semejanza *geométrica*: L_p/L_m = λ
b) condiciones *análogas* de funcionamiento (triángulos de velocidades *semejantes*):

$$\frac{c_{\rm p}}{c_{\rm m}} = \frac{u_{\rm p}}{u_{\rm m}} = \frac{w_{\rm p}}{w_{\rm m}}$$

Las hipótesis anteriores conducen a buenos resultados, a excepción de los *rendimientos* que resultan peores en tamaños menores, a causa de las pérdidas intersticiales. Según Moody,

$$\frac{1-\eta_{\rm m}}{1-\eta_{\rm p}} = \lambda^{1/4}$$

EJERCICIO

En el ensayo del modelo de una turbina con escala $\lambda = 5$, se determina un rendimiento óptimo $\eta = 0,85$. Estímese el del prototipo en las mismas condiciones de trabajo.

Solución

$$\frac{1 - \eta_{\rm m}}{1 - \eta_{\rm p}} = \lambda^{1/4}; \quad \frac{1 - 0.85}{1 - \eta_{\rm p}} = 5^{1/4}$$
$$\eta_{\rm p} = 0.90$$

Relación de velocidades y alturas Puesto que dimensionalmete $V^2/2g = H$,

 $\frac{c_{\rm p}}{c_{\rm m}} = \left(\frac{H_{\rm p}}{H_{\rm m}}\right)^{1/2}$

Relación de velocidades y revoluciones

 $u_{p} = \frac{\pi \cdot D_{p} \cdot n_{p}}{60} \qquad u_{m} = \frac{\pi \cdot D_{m} \cdot n_{m}}{60}$ $\frac{u_{p}}{u_{m}} = \frac{D_{p}}{D_{m}} \cdot \frac{n_{p}}{n_{m}} = \lambda \cdot \frac{n_{p}}{n_{m}}$ $\frac{\frac{c_{p}}{c_{m}} = \lambda \cdot \frac{n_{p}}{n_{m}}}{\frac{n_{p}}{n_{m}}}$

Relaciones de semejanza en turbinas

- 1. $n = n(\lambda, H)$ 2. $Q = Q(\lambda, H)$ 3. $P_e = P_e(\lambda, H)$ $\frac{c_p}{c_m} = \left(\frac{H_p}{H_m}\right)^{1/2}$ $\frac{c_p}{c_m} = \lambda \cdot \frac{n_p}{n_m}$
- 1. Relación de número de revoluciones

$$\frac{n_{\rm p}}{n_{\rm m}} = \frac{1}{\lambda} \cdot \left(\frac{H_{\rm p}}{H_{\rm m}}\right)^{1/2}$$

2. Relación de caudales

3. Relación de potencias

$$\frac{P_{ep}}{P_{em}} = \frac{\eta_{p} \cdot \gamma_{p} \cdot Q_{p} \cdot H_{p}}{\eta_{m} \cdot \gamma_{m} \cdot Q_{m} \cdot H_{mp}}$$
$$\frac{P_{ep}}{P_{em}} = \frac{\eta_{p}}{\eta_{m}} \cdot \frac{\gamma_{p}}{\gamma_{m}} \cdot \lambda^{2} \cdot \left(\frac{H_{p}}{H_{m}}\right)^{3/2}$$

En turbinas hidráulicas $\lambda_p = \lambda_m$; si además se supone el mismo rendimiento para toda una familia,

$$\frac{P_{ep}}{P_{em}} = \lambda^2 \cdot \left(\frac{H_p}{H_m}\right)^{3/2}$$

Estas tres relaciones tienen validez conjuntamente, pero pierden su significado en cuanto una de ellas no se cumple.

Relaciones de semejanza en bombas

- 1. $H = H(\lambda, n)$ 2. $Q = Q(\lambda, n)$ 3. $P_e = P_e(\lambda, n)$ $\frac{c_p}{c_m} = \left(\frac{H_p}{H_m}\right)^{1/2} \frac{c_p}{c_m} = \lambda \cdot \frac{n_p}{n_m}$
- 1. Relación de alturas

2. Relación de caudales

$$\frac{Q_{\rm p}}{Q_{\rm m}} = \frac{S_{\rm p}}{S_{\rm m}} \cdot \frac{c_{\rm p}}{c_{\rm m}} = \frac{S_{\rm p}}{S_{\rm m}} \cdot \lambda \cdot \frac{n_{\rm p}}{n_{\rm m}}$$
$$\frac{Q_{\rm p}}{Q_{\rm m}} = \lambda^3 \cdot \frac{n_{\rm p}}{n_{\rm m}}$$

3. Relación de potencias

$$\frac{P_{ep}}{P_{em}} = \frac{\gamma_{p} \cdot Q_{p} \cdot H_{p} / \eta_{p}}{\gamma_{m} \cdot Q_{m} \cdot H_{m} / \eta_{m}}$$

$$\frac{P_{ep}}{P_{em}} = \frac{\eta_{m}}{\eta_{p}} \cdot \frac{\gamma_{p}}{\gamma_{m}} \cdot \lambda^{5} \cdot \left(\frac{n_{p}}{n_{m}}\right)^{3}$$

Lo más frecuente es que $\gamma_p = \gamma_m$

Las tres relaciones anteriores tienen validez conjuntamente, pero pierden su significado en cuanto una de ellas no se cumple.

Se podrían aplicar a una misma bomba $(\lambda = 1)$ si queremos analizar cómo se comporta con diferentes velocidades de giro.

Velocidad específica de las turbinas hidráulicas

$$\frac{n_{\rm p}}{n_{\rm m}} = \frac{1}{\lambda} \cdot \left(\frac{H_{\rm p}}{H_{\rm m}}\right)^{1/2}$$

$$\frac{P_{ep}}{P_{em}} = \lambda^2 \cdot \left(\frac{H_p}{H_m}\right)^{3/2}$$

eliminamos λ entre ambas:

$$\frac{n_{\rm p} \cdot P_{ep}^{1/2}}{H_{\rm p}^{5/4}} = \frac{n_{\rm m} \cdot P_{em}^{1/2}}{H_{\rm m}^{5/4}} = \frac{n \cdot P_{e}^{1/2}}{H^{5/4}} = \text{constante}$$

que tiene que verificarse para toda una familia *geométricamente semejante* en condiciones análogas de funcionamiento.

En condiciones de *diseño* (*), a la constante anterior se le llama *velocidad específica de turbinas* n_s , y su valor distingue a una familia de otra:

$$n_s = \frac{n \cdot P_e^{*1/2}}{H^{*5/4}}$$
 (dimensional)

ya que sus unidades frecuentes son: *n* rpm, P_e CV, *H* m

Jugando con *n* (3000, 1500, 1000, 750,...rpm) podemos resolver una misma situación ($H ext{ y } P_e ext{ dados}$) con distintas familias y/o distinto valor de *n_s*.

Más conveniente sería expresar n_s en forma adimensional, aunque no es frecuente:

$$n_{so} = \frac{\omega \cdot P_e^{*1/2}}{\rho^{1/2} \cdot (g \cdot H^*)^{5/4}}$$

Velocidad específica en bombas hidráulicas

Eliminando λ entre ambas se obtiene la *velocidad específica de bombas n_q*:

$$n_q = \frac{n \cdot Q^{*1/2}}{H^{*3/4}}$$
 (dimensional)

Las unidades frecuentes para medir n_q son: *n* rpm, *Q* m³/s, *H* m. Jugando con *n*, podemos resolver una misma situación (*H* y *Q* dados) con distintas familias y/o distinto valor de n_q .

La forma **adimensional** de n_a es,

$$n_{qo} = \frac{\omega \cdot Q^{*1/2}}{(g \cdot H^*)^{3/4}}$$

